Metodo di scavo convenzionale: il drill & blast nella costruzione di tunnel

2022-09-10 03:28:26 By : Mr. Michael Fu

Nel mondo delle costruzioni sotterranee, esistono due metodi principali per lo scavo di gallerie nella roccia: metodi di scavo convenzionali e metodi di scavo meccanizzati. Il primo include la potente tecnica Drill & Blast, mentre il secondo è meglio conosciuto per gli scavi eseguiti con enormi macchine denominate Tunnel Boring Machines (TBM). 

C’è da dire però, che da circa un decennio il metodo di scavo drill & blast è passato ad essere considerato non convenzionale prendendo il posto che prima aveva lo scavo meccanizzato mediante TBM. Oggigiorno infatti, è molto frequente la realizzazione di tunnel mediante mezzi meccanici, specialmente in ambito urbano, riservando al metodo drill & blast speciali occasioni in cui non si può procedere all’apertura di un tunnel in maniera “convenzionale”. Limiti di applicazione del metodo drill & blast

Il metodo può essere utilizzato in tutti i tipi di rocce e rispetto al metodo meccanico con TBM, il costo di iniziale di esecuzione del tunnel risulta essere generalmente inferiore. La lunghezza del tunnel nella scelta del metodo di scavo Per contro, dal punto di vista della produzione giornaliera, ovvero nell’avanzamento alla costruzione, il metodo presenta una produzione inferiore rispetto ad uno scavo eseguito con macchina TBM. Un ruolo importante lo occupa anche la lunghezza del tunnel nella scelta del metodo di scavo visti i costi onerosi di impianto cantiere e della macchina TBM stessa che ne scoraggiano l’utilizzo per tunnel di lunghezza inferiore ai 2 km. Di norma, per scavi di lunghezza superiore a 4÷5 km si utilizza spesso una TBM, mentre per lunghezze non superiori a 1,5 km, la tecnica Drill & Blast è generalmente la scelta migliore (sempreché non possano essere impiegate tecnologie alternative).La questione della vibrazioni che genera

Di norma, per scavi di lunghezza superiore a 4÷5 km si utilizza spesso una TBM, mentre per lunghezze non superiori a 1,5 km, la tecnica Drill & Blast è generalmente la scelta migliore (sempreché non possano essere impiegate tecnologie alternative).

Prevedendo l’uso di esplosivo per l’apertura del cavo, il drill & blast comporta un’importante limitazione alla sua applicazione che è data dai livelli di vibrazione generati. L’energia sviluppatasi con il brillamento delle mine produce per buona parte lavoro, che si traduce in frantumazione della roccia e relativo spostamento dal proprio sito. Solo una parte dell’energia viene trasformata in onde sismiche che si propagano nel terreno, radialmente ed a forte velocità, (2000÷5000 m/sec) provocando un’oscillazione del terreno stesso, che viene chiamata vibrazione, la cui intensità dipende direttamente dalla quantità di esplosivo fatta brillare.

Figura 1 – Abbattimento del fronte in galleria mediante esplosivo

Allontanandosi dalla zona di esplosione la velocità di oscillazione delle particelle, attorno alla posizione di equilibrio, tende a diminuire. In pratica, dunque, si genera nell’ambiente circostante il foro da mina un fenomeno assimilabile, in grandi linee, ad un terremoto naturale dal quale si differenzia per la più elevata frequenza delle vibrazioni e per la minor ampiezza delle oscillazioni. Sono stati fatti molti studi per individuare i vari parametri, che possono meglio caratterizzare le onde sismiche, al fine di valutare la loro attitudine a produrre danni. Anche gli studi condotti personalmente sul fenomeno delle vibrazioni indotte sulle strutture (Chiarelli 2004), hanno evidenziato che la velocità di vibrazione, associata alla frequenza, sia il parametro che meglio si adatta allo scopo. Altri colleghi considerano, invece, valida l’associazione di accelerazione e frequenza in particolare quando si vuol tenere conto non solo della quantità di energia trasmessa ma anche dal modo in cui essa è trasmessa.

È stato osservato che per distanze limitate, qualche decina di metri, le frequenze di vibrazioni trasmesse sono notevolmente maggiori nelle rocce rispetto alle terre. Le ampiezze di oscillazione, invece, misurate nelle terre, sono 2÷3 volte superiori a quelle misurate nelle rocce.

Le rocce compatte si comportano quasi elasticamente, assorbono meglio energia e trasmettono vibrazioni di frequenze ben maggiori, dell’ordine di 20÷80 Hz, che non i terreni sciolti, dove difficilmente si superano i 10 Hz.

È da notare che la frequenza tende, comunque, a diminuire col crescere della distanza dal punto di scoppio.

La presenza di fratture, faglie o stratificazioni può rinforzare, in direzioni preferenziali, le ampiezze di certe componenti delle vibrazioni trasmesse ed inoltre può dar luogo a interferenze, riflessioni di onda, complicando notevolmente il fenomeno dello smorzamento naturale da parte del terreno.

Ne consegue che nella roccia, in genere, si possono far esplodere cariche di esplosivo maggiori che non nel terreno sciolto senza danni dovuti alle vibrazioni.

La velocità è, comunque, la grandezza più comunemente adottata ai fini delle correlazioni con gli effetti dinamici delle vibrazioni.

Nel grafico in figura 2 sono riportati i valori di riferimento per la velocità di vibrazione per campi di frequenza 1 - 100 Hz ammissibili sulle fondamenta degli edifici in base alla classe di costruzione secondo la normativa UNI 9916 : 2004.

Nel grafico di figura 2 le classi indicano rispettivamente:

Classe 1 - Costruzioni industriali, edifici industriali e costruzioni strutturalmente simili;

Classe 2 – Edifici residenziali e costruzioni simili;

Classe 3 - Costruzioni che non ricadono nelle classi 1 e 2 e che sono degne di essere tutelate. 

Figura 2 – Campi di frequenza ammissibili sulle fondamenta degli edifici in relazione alla classe di costruzione - UNI 9916 : 2004.

L’esperienza mostra che i limiti riportati nel grafico precedente, siano da considerarsi validi per la tutela della stabilità degli edifici ma che siano troppo elevati per garantire gli edifici da qualsiasi danno in particolare arrecato agli intonaci, ai rivestimenti ed alle decorazioni (Chiarelli 2004).

Per frequenze fino a 50 Hz, si ritiene che la velocità di vibrazione della componente prevalente non debba superare il valore di 1, 3 e 8 mm/sec sulle fondamenta degli edifici rispettivamente appartenenti alla I, II, e III classe e che il valore della velocità risultante non debba, parimenti, superare i 3, 5, 10 mm/sec.

Superando detti limiti, in maniera sistematica, sorgono sicuramente problemi alle strutture seppure di livello minore.

...continua la lettura nel PDF scaricabile in fondo all'articoloAll'interno l'articolo prosegue con la descrizione delle varie FASI DI ESECUZIONEPerforazioneCaricamento e brillamentoVentilazione SmarinoRivestimento temporaneo e definitivoMappatura geologicaProgettazione delle perforazioni Registrati o effettua il login per scaricare il pdf(*) (*) Se dopo aver effettuato il login non vedete ancora il link al documento, provate ad aggiornare la pagina.

Leggi anche Gallerie realizzate in ammassi rigonfianti e/o spingenti Analisi dell’efficacia dei metodi di prospezione in avanzamento nello scavo meccanizzato (per mezzo di Tunneling Boring Machines, TBMS) Dinamica delle opere in sotterraneo Il monitoraggio strutturale per la sicurezza dei tunnel

La ceramica e le pavimentazione esterne: due interessanti casi a Rimini

Tra primo e terzo condono edilizio: le date corrette per la sanatoria, il frazionamento e l'inidoneità funzionale

Professionisti tecnici e sostenibilità ambientale in edilizia: software per l'applicazione del protocollo ITACA

Immobili in costruzione: ecco il decreto per la polizza decennale a tutela dell'acquirente sui vizi dell'opera

Città sostenibili: firmato il Protocollo d’intesa tra il Mims e le 9 città selezionate dalla Commissione europea

Cessione del credito bloccata e crisi energetica: la lettera di Federcostruzioni ai Partiti

Superbonus case unifamiliari, condomini, IACP, ONLUS:riepilogo delle scadenze e diverse percentuali di detrazione

Autotrasporto: 29,6 milioni di euro per il 2022 a compensazione dell’aumento dei prezzi dell’Ad Blue

4 progetti italiani tra i finalisti del BuildingSMART International OpenBIM Awards 2022

Porte esterne resistenti al fuoco: quali sono? I chiarimenti dei Vigili del Fuoco

La ceramica e le pavimentazione esterne: due interessanti casi a Rimini

Impermeabilizzazione: ASSIMP celebra il suo ventennale

Scopri Geniale Cappotto Sismico® nel webinar di Ecosism® e AMV

Il futuro dell'energia? È nello spazio

Dai Periti Industriali la prima comunità energetica a impatto sociale

Digitalizzazione: a Roma Innovation Hub un focus sul rapporto tra tecnologia e sicurezza

Il più importante Portale di Informazione Tecnico Progettuale al servizio degli Architetti, Geometri, Geologi, Ingegneri, Periti, professione tecnica, Albo Professionale, Tariffe Professionali, Norme Tecniche, Inarcassa, Progetto Strutturale, Miglioramento Sismico, Progetto Architettonico, Urbanistica, Efficienza Energetica, Energie rinnovabili, Recupero, Riuso, Ristrutturazioni, Edilizia Libera, Codice Appalti, Progetto Impianti termotecnici, Modellazione Digitale e BIM, Software Tecnico, IOT, ICT, Illuminotecnica, Sicurezza del lavoro, Sicurezza Antincendio, Tecnologie Costruttive, Ingegneria Forense, CTU e Perizie, Valutazioni Immobiliari, Certificazioni.

INGENIO-WEB.IT è una testata periodica di IMREADY Srl registrata presso la Segreteria di Stato per gli Affari Interni di San Marino con protocollo n. 638/75/2012 del 27/4/2012. Direttore Responsabile: Andrea Dari.

Copyright 2022 IMREADY Srl Tutti i diritti riservati. Privacy Policy, Sito realizzato da Global Sistemi Credits

IMREADY Srl, Strada Cardio, n.4, 47891 Galazzano, RSM, Tel. 0549 909090 Mail: segreteria (@) imready.it